A Comparative Analysis of Speaker Identification on English and Hindi Database

نویسندگان

  • Anjali Jain
  • O. P. Sharma
چکیده

In this paper a text-dependent speaker recognition method is presented by combining Mel frequency cepstrum coefficients (MFCC) and Euclidean distance. The robustness of this speaker identification method for different speaking language is analyzed in this paper. The speaker identification algorithm using English and Hindi Indian voice database (IVD) which contains sentences of data spoken is accomplished. An improvement in recognition rate is observed by using different windows and increasing the number of training voice samples. Accuracy upto 100% can be obtained for text-dependent speaker identification for different windows by using a short training and testing utterance about 4 seconds.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Comparative Study of Gender and Age Classification in Speech Signals

Accurate gender classification is useful in speech and speaker recognition as well as speech emotion classification, because a better performance has been reported when separate acoustic models are employed for males and females. Gender classification is also apparent in face recognition, video summarization, human-robot interaction, etc. Although gender classification is rather mature in a...

متن کامل

Multi - Devices Hindi Speech Database for Speaker Identification using GMM

Abstract— In this paper, we study the effect on speaker identification (SI) system when speech data is recorded on two different sensors, a HP Pavilion third generation laptop and a Samsung mobile ( S3770K) both with built-in microphone in parallel in a closed room in noise free environment. The database contains 10 Hindi sentences (50-60 seconds speech) and one english sentence (7-8 seconds sp...

متن کامل

Text-Dependent Multilingual Speaker Identification using Learning Vector Quantization and PSO-GA Hybrid Model

---------------------------------------------------------------------***--------------------------------------------------------------------Abstract In this work a multilingual speaker identification system is proposed. The feature extraction techniques employed in system extract Mel frequency cepstral coefficient (MFCC), delta mel frequency cepstral coefficient (DMFCC) and format frequency. Th...

متن کامل

Text-Dependent Multilingual Speaker Identification using Back Propagation Neural Network and PSO-GA Hybrid Model

In this work a multilingual speaker identification system is proposed. The feature extraction techniques employed in the system extract Mel frequency cepstral coefficient (MFCC), delta mel frequency cepstral coefficient (DMFCC) and format frequency. The feature selection is done using hybrid model of particle swarm optimizatiom (PSO) and Genetic Algorithm (GA). We have used Back Propagation (BP...

متن کامل

Multi Lingual Speaker Identification on Foreign Languages using Artificial Neural Network

Based on the Back Propagation Algorithm, this paper portrait a method for speaker identification in multiple foreign languages. In order to identify speaker, the complete process goes through recording of the speech utterances of different speakers in multiple foreign languages, features extraction, data clustering and system training. In order to realize the purpose, a database has been prepar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013